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NONEXISTENCE OF INFORMATIVE UNBIASED
ESTIMATORS IN SINGULAR PROBLEMS

By RicHArD C. Liu! AND LAWRENCE D. BrRown 2

Cornell University

In many nonparametric problems, such as density estimation, non-
parametric regression and so on, all the existing informative estimators are
biased (asymptotic or finite sample). There has long been a suspicion that
either informative unbiased estimators do not exist for such problems or
they must be quite complicated. In this paper, we clarify the nonexistence
of informative unbiased estimators in all singular problems both for fixed
sample size and asymptotically (this includes most problems with optimal
rate of convergence slower than n~!/%), We also discuss situations in
regular problems where such nonexistences can occur.

1. Introduction. Unbiasedness has always been one of the most popular
criteria for an estimator to be reasonably good in many studies (either in an
asymptotic sense or in the finite sample case). Most problems in the classical
theory—Ilater called regular problems in parametric, semiparametric or non-
parametric contexts—have been equipped with enough regularity implicitly or
explicitly [e.g., a parametric family {P,} which is quadratic mean differentiable
and so on], so that certain magic phenomena happen over and over in those
problems. For example, the optimal rate of convergence for such problems
happens to be the magic sequence {n~1/2} ([3], [9]); informative unbiased
estimates frequently exist and they can also be asymptotically optimal under
mild conditions. Hence, notable contributions in finding better /best estimates
among those estimators, respectively, such as uniformly minimum variance
unbiased estimator (UMVUE) ([2], [11], [12]) and MLE ([9]), are also well
established.

In the past decade, the study of useful singular (for a definition see Section
2) nonparametric problems has become more extensive (e.g., density estima-
tion, nonparametric regression). Remarkable progress has been made in the
area of optimal rates of convergence; it was initially a surprise that the magic
sequence {n~'/%} is mostly no longer available ([7], [8], [20], [23]). In spite of
years of searching for informative estimators in an asymptotic sense, it
appears that all existing informative estimators are biased (asymptotically, as
well as in finite samples). Therefore, many interesting phenomena seem to be
quite different from those appearing in regular problems. The question to ask
now is ‘“Are informative unbiased estimators also possible for singular
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2 R. C. LIU AND L. D. BROWN

problems?”’ In this paper, we will show the nonexistence of informative
unbiased estimators for such problems. Moreover, similar phenomena in regu-
lar problems will also be addressed. This provides evidence that ““bias-vari-
ance trade-off ’ is an essential component of estimation for singular problems.
A special case for a similar phenomenon was demonstrated earlier by Doss and
Sethuramon (1989). (See also Section 4.2.)

2. Singular problems. Let F = {F} be a family of distributions. Let
T(F) be a V-valued functional of interest in the estimation problem (where V
is a normed linear space with a norm || - [|v). Even though most of the results
continue to hold for pseudonorms, there is no loss of generality in practice to
assume that || - |ly is a norm. For example, if we are interested in estimating a
parameter 6 from some parametric family { P,}; then the functional of interest
is T(P,) = 9 € R*; or if we are interested in estimating the true density value
at a point [say f(x,)] when f = dF/dx, then the functional of interest is
T(F) = f(x,) € R. Let [R(T')] denote the smallest linear subspace containing
the range space of the functional T'. In this paper, we will focus our attention
on those cases when dim[ R(T')] is finite. Even though the following approach
can explain some of the phenomena in other cases, cases when dim[ R(T")] is
infinite will be discussed and characterized more precisely in a forthcoming
paper in a different way. Now the estimation problem is to estimate the true
functional value T(F) (through an estimator T, in a measurable way w.r.t.
the Borel o-field on V) from n iid. observations X;,..., X, generated by
some F € F. For the convenience of our discussion in all the sections, let

(2.1) b(e, F,, T,F) = sup{IT(F,) — T(F,)lly: F, € F, H(F,, F,) < ¢

be the Hellinger modulus of continuity for the functional T' over the family
F, where H(F,G) is the Hellinger distance between two probabilities F,G
(cf. [3]). We will abuse the notation later by using b(¢) whenever there is no
confusion.

DeFINITION 2.1 (Singular point/singular problem). In a functional estima-
tion problem (defined above), a distribution F, € F is called a “singular
point” if

b(e)
2.2 I -
(2.2) oo &

An estimation problem is called “singular’ if there is a singular point F, € F.

2.1. Finite sample property. It is known in the literature that an estima-
tor T, is unbiased at F € F, if E(T,) = T(F). For our convenience, we adapt
the following terms:

DEFINITION 2.2 (Local unbiasedness). An estimator T, for estimating T'(F)
is “locally unbiased” (l-unbiased) at a distribution F, € F if and only if it is
unbiased over a neighborhood of F,.
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DEFINITION 2.3 (Local informative estimator in finite sample). An estima-
tor T, is “locally informative (I-informative) at a distribution” F, in the finite
sample case if there is a positive number My such that

. 2
(2.3) limsup sup Ep(IT,IIv) < M,
e—>0 H(F,Fy<e
F,F,eF

Moreover, T, is said to be ‘“‘I-informative” if it is [-informative at every F' € F.
Furthermore, an estimator T, is said to be ‘‘globally informative” (g-informa-
tive) if it is l-informative with supz .y My < .

Note 1. In fact, all the above definitions are independent of the choice of
the norm | - |ly. Similar effects happen in all the other definitions of this

paper.

Note 2. Since “unbiasedness” (over the entire family) implies ‘/-unbi-
asedness” and so on, results in our context will be stronger in terms of
“I-unbiasedness” /“l-informativity’’ than those in terms of ‘“‘unbiasedness’/
“g-informativity”’ and so forth.

THEOREM 1. In a singular estimation problem, no estimate T, can be both
l-unbiased and l-informative at any singular point.

In a wide class of interesting singular problems, such as nonparametric
density estimations, quite a few informative estimators have continuous sec-
ond moment with respect to the topology induced by Hellinger distance (e.g.,
many kernel estimators). Thus, (2.3) is automatically satisfied. Consequently,
the following corollary will have a wide range of applications.

CoroLLARY 1. If an estimator T, has continuous second moment, then T,
is l-biased at every singular point F, in the sense of Definition 2.2.

2.2. Asymptotic property. In respect to some facts in asymptotics, Donoho
and Liu [3] established that {b(n~1/2)} defines a lower bound for the optimal
rates of convergence in estimating a functional T'(F) € R. The same argu-
ment implies that it is also true in our settings. As an immediate consequence,
(2.2) implies the optimal rate for estimating T'(F) over F is slower than
{n~1/%}. Second, it also implies that any attainable modulus rate {b(n~/?)} is
optimal. As to this effect, it is known that modulus rates are frequently
attainable and thus optimal in many classes of interesting problems. For
example, in [4], it is shown that when the functional is linear and the family is
convex, a modulus rate can be attainable under mild conditions. Other situa-
tions where the {b(n~1/2)} rate can be attained are also discussed there (e.g.,
estimating the mode of a density). Hence, modulus rates are commonly
existing and desirable. (For definitions of rates of convergence, see e.g., [3],
[15], [23].)
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DEerFINITION 2.4 (Asymptotic unbiasedness). Let {f(n)} be a rate for the
estimator T),. Let N(r, F,)) denote the Hellinger ball around F, with radius r.
The estimator T, is said to be “locally asymptotically unbiased” (I-a-unbi-
ased) at a distribution F, € F if there is a ¢ > 0 such that

(2.4) lim limsup sup “EF;ZM[ f(n)(T, - T(F))] “v =0,
M—» n-o  FleN(t//n,F,)

where 1,,(v) = v if |[vlly <M or otherwise equals to ¢ -v with ¢ = M/|lvlly.
Moreover, T, is said to be “asymptotically unbiased’ if it is locally asymptoti-
cally unbiased at every distribution F € F.

DEFINITION 2.5 (l-asymptotically informative estimator). Let T, be an
estimator for estimating T'(F'). Let {f(n)} be a rate of convergence of T,.
Then, T, is said to be “locally asymptotically informative (l-a-informative) at
a distribution” F, € F with the same rate if there is a number My and a
positive number ¢ such that

lim limsup  sup  Epg{|La] F(n)(T, - T(E))] [} < M,
Moo n-ow  FleN(t/)m, Fy)
The estimator T, is said to be “l-a-informative” if it is l-a-informative at
every point F € F.

DerFiNiTION 2.6 (Infinitesimal irregularity). b(e) is irregular infinitesti-
mally if
b(an~1/2) h(a)

25) lim ——5—=h 0 0* d l = o,
(2.5) lim b(n-17%) (a¢) >0 asa— an lfl?;lp . ©

where h(a) > 0 for a > 0, is a real valued function.

Note 1. The above definition is satisfied by all b(¢) Hélderian with leading
exponent less than 1 [i.e., b(¢) = Ae? + 0(¢?) and 0 < g < 1].

NoTE 2. Most nonparametric problems in the literature are Holderian with
q < 1, and modulus rates are often attainable.

Norte 3. Infinitesimal irregularity cannot be dropped [e.g., some nonpara-
metric estimation problems with modulus rates n~1/%(log(n))'/2 (cf. [13], [16]),
which are singular but infinitesimally regular, can have [-a-unbiased and
l-a-informative estimators with their modulus rates. We will not pursue this
further here].

THEOREM 2. In a singular problem, if b(e) is irregular infinitesimally at
some singular point F,, then there is no l-a-unbiased, and l-a-informative
estimator with the modulus rate {b(n~1/2)} at that singular point.



NONEXISTENCE OF INFORMATIVE UNBIASED ESTIMATORS 5

3. Regular problems. It is worth noticing that, even though globally
informative and unbiased estimators often exist for regular problems, the
phenomenon of ‘“nonexistence of informative unbiased estimators” can still
occur in some nice regular problems. Many such examples share the same
characteristic that they have some singular points in their closure. Therefore,
the effect of a singular point (even as a limit point but not really in the family)
cannot be easily ignored. In this section, we will explore such an effect through
the following examples.

ExamMpLE 1 (Poisson case). Consider the family F = {P,: Poisson(A) with
A > 0}. Let the functional of interest be T'(P,) = 1/A. This example has been
considered in [6]. Then, by reparametrization, this is equivalent to the problem
(denoted by E) of estimating T(F,) = 6 from the parametric family G =
{F, = Poisson(A): @ = 1/A, 6 > 0}. It is clear that Fisher information at each 6
exists and is equal to 1/6%, hence it is regular. However, the Fisher informa-
tion tends to zero as 0 tends to infinity. In fact, by considering the extended
parametric problem (denoted by ¥') with

(3.1) G =G U {F, = Poisson(0)} and T(F,) =c (some constant),

the problem becomes singular because b(¢) = « at F,. Therefore, problem &
can be obtained by deleting a singular point from problem ¥. Moreover, it is
also well known that problem E has a similar “behavior” to the binomial
problem (see Lehmann’s book [12]); namely, there is no unbiased estimator for
such problems. (Note: This behavior does not necessarily imply that the
closure of the problem under Hellinger topology is singular.) Furthermore, by
Theorem 2, there can be no l-a-informative and [-a-unbiased estimator in a
neighborhood of 6 = «, even though such estimators do exist on [0, b] for
b < o,

However, the fact that Fisher information degenerates to zero (as in Exam-
ple 1) is not a necessary characteristic. One interesting question to ask here is
“Can anything go wrong in a quadratic-mean-differentiable problem with
Fisher informations totally bounded away from zero over the entire family?”’
Even for such problems, the effect of a singular point as a limit point is still
unavoidable. See Example 2.

ExampLE 2 (QMD family with Fisher informations totally bounded away
from zero). Let us consider the parametric problem with the family of
distributions as

dF,
F, = {Fw: d):" (x) =f,(x) = (1 + w?sin(x/w)), w € Q},

where A denotes the Lebesgue measure, |x| < 1/2,and Q ={w: 0 <w <a < 1}
(where a will be chosen later). It can be verified directly that every f, is a
density. Now, since the Fisher information I exists and is continuous in a
small open interval Q = {w: 0 < w < a}, a straightforward calculation shows
that Ip(w) tends to 1/24 as w — 0. Thus, by choosing “a’ sufficiently small,
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the Fisher informations of the entire family will then be totally bounded away
from zero. In addition to that, readers may easily check that {f,: 0 < w < a}is
quadratic-mean-differentiable.

Now, by adding one distribution with density fy(x) =1 (for x| < 1/2) to
the family F, (call the new family F,, where Q' = Q U {0}), the modulus at
o = 0 becomes

b(e) = 8Y/362/3 + o(£2/3).

Hence, f, is a singular point. Let us now assume that there is a globally
informative unbiased estimator T, for the parametric problem F,. Then, due
to Fatou’s lemma as well as the fact that £, (x) — f,(x) pointwisely as w — 0,
we have that T, is also a globally informative unbiased estimator for the
parametric problem F,, which certainly contradicts Theorem 1. Hence, there
is no globally informative unbiased estimator for the problem F, even though
it is QMD with Fisher informations totally bounded away from 0. An asymp-
totic result follows from Theorem 2.

4. Discussion. Readers should notice that having V being a finite dimen-
sional space does not mean the statistical problem has to be finite dimensional
(e.g., in a nonparametric problem of estimating the density at a point, say x,,
V = R is in fact one-dimensional). Also, our results in the asymptotic sense are
in terms of the behavior of the asymptotic distributions. Such results are more
delicate than results in terms of the limiting behaviors of the bias and second
moments. Results in terms of limiting behaviors of bias and second moment
can be derived simply by following an argument similar to the proof of
Theorem 1 without too much extra effort and are consequently easier to prove
than the results in our Theorem 2.

4.1. Examples on singular problems. Since interesting singular problems
naturally arise in all areas of statistics regardless of the problem being finite
dimensional (e.g., parametric) or infinite dimensional (e.g., nonparametric), we
will take a look at some interesting examples below.

ExamMpLE 3 (Mixing normal). In spite of the fact that most interesting
singular problems are nonparametric, mixing normal is one of the many
interesting singular problems in parametrics. For simplicity, we will use a
simple version of mixing normal, which will directly lead to the consequence
that many interesting mixing normal problems (e.g., [24]) are in fact singular
problems. Let X,,..., X, be iid. observations from some distribution with
density of the form

fu(x) = 36(x — n) + 36(x + ),

where ¢(x) = (1/\/277-)e"“2/2 is the density for N(0, 1), and w.l.o.g. we can
assume u > 0. The problem is to estimate the functional T'(f,) = u from
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those observations. A direct computation shows that
b(e) = Ae'/? + o(e¥/?)

at u = 0, where A is a positive constant. Therefore, the problem is singular.
Consequently, there will be no locally informative unbiased estimator in either
the finite sample sense or the asymptotic sense over any neighborhood of
u = 0. However, we can use some biased estimator such as the maximum
likelihood estimator. This estimator is informative in our sense both in finite
samples and asymptotically at the modulus rate b,_y(n~'/?) = n~/*,

On the other hand, singular problems are widely common in nonparamet-
rics. Hence, phenomena in Section 2 can be easily seen in this area. For
example, Sacks and Ylvisaker [20] considered a density estimation problem
over their family in estimating T(f) = f(0) (density value at 0). For this
problem, the modulus at every density f in the family has been computed (see
[5], [14D) as

b(e) = Ape?/® + o(£*/%),

where A s is a constant. Hence, it is a singular problem. It is quite obvious,
from the asymptotic minimax kernel estimator found by Sacks and Ylvisaker
(which has also been reconfirmed in [5] to be the best linear estimator with the
modulus rate for this problem), the asymptotic second moments (normalized
by the factor n~*/®) are nicely bounded by the asymptotic minimax risk
(3/4)15-1/5M*/5 (computed in [20]). Thus, this kernel estimator gives useful
information. On the other hand, it has to be asymptotically biased at every
singular point as required in Theorem 2.

Due to the effect (e.g., from Example 1) that there is no unbiased estimator
for such a problem (see also [15]), and due to the fact that the second moment
of an unbiased estimator can be arbitrarily bad over an arbitrarily small
Hellinger neighborhood of a singular point, it is easy to suspect that:

1. an /-unbiased estimator never exists at a singular point or

2. simply the second moment of an /-unbiased estimator should be infinity at
a singular point. But that is not precisely the case, as shown by the
following example.

ExampPLE 4 (Unbiased estimator with finite variance at a singular point).
Without loss of generality, we can consider the case when a single obser-
vation X is obtained from a distribution in the parametric family F =
{Uniform(6% — 1/2,603 + 1/2): |6] < 1/2}. Let

T(X) = sign(X)/{s((X— sign(X)/Z)z)l/s} for |X] > 1/2,

or otherwise be equal to 0. Then, a direct computation shows that
T(X) is indeed an unbiased estimator for the entire parameter space with
Vary (T (X)) = 0 < «. On the other hand, since

b(e) = (1/2)"°e*/?
at 8, = 0, F, = Uniform(—1/2,1/2) is in fact a singular point.
0 0
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4.2. Relation to other works. Rosenblatt [19] has shown that there is no
unbiased estimator in a density estimation problem. However, his results do
not establish the nonexistence of asymptotically unbiased and informative
estimators.

Even though bias and variance are both important in measuring the
accuracy of an estimator, and are both essential in the informativity of a
confidence statement given by an estimator, it has been a trend in estimation
theory that bias is a primary concern. Besides those successful findings in
constructing informative unbiased estimators, methods for improving existing
informative estimators by reducing their biases are very popular. In the study
of regular problems, many methods (e.g., jacknife and so on) are available for
such a purpose in different situations. However, in singular problems, little
has been known whether reducing bias towards zero is a smart thing to do.
Doss and Sethuraman [6] have shown that whenever (1) ‘“the family has
common support”’; (2) “the relative density functions dP,/dP, belong to
L*(P,)’; and (3) “there exists no unbiased estimator for the problem”; the
variance tends to infinity as the bias is reduced towards zero in a fixed sample
size setting. Only a handful of examples in the literature state such misbehav-
ior concerning unbiased estimators. They usually serve as examples and still
leave behind the mysteries about “When will the misbehavior occur?”’ and
“Will this phenomenon affect a large area of statistical problems?”’ Since most
of the existing examples come from exponential families [in cases where
conditions (1) and (2) are satisfied], analyticity can then be used to explain
certain phenomena like this. However, conditions (1) and (2) are rather
restrictive in the sense that they are not satisfied in many interesting prob-
lems where closely related misbehaviors may occur (e.g., nonparametric prob-
lems). Furthermore, condition (3)—the crucial assumption which results that
improving bias towards zero is undesirable—is quite a strong and abstract
assumption in the following senses:

1. There is no concrete way of knowing that your problem satisfies this
condition (consequently, you do not know when to apply it).

2. The nondesirability of reducing bias too far is in fact a consequence of a
weaker condition namely ‘“there is no informative unbiased estimator”
instead of condition (3).

It is understandable that if all unbiased estimators are not informative
estimators (or do not exist), then your estimator may turn bad if you try to
reduce its bias towards zero. In many cases, the result can be reflected in
terms of unbounded variance (or second moment). Readers may also notice
that Doss and Sethuraman’s result does not really mean that bias reduction is
bad. It merely indicates that, for certain problems, the reduction should not be
pushed too far (i.e., reducing bias towards zero). In fact, for all singular
problems, the informativity will indeed be arbitrarily bad over any neighbor-
hood of a singular point when the bias is reduced towards zero. We will explore
one theorem below. Other results of the same nature (such as those in the
asymptotic sense) can be proved by a similar technique; we will not pursue this
here.
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THEOREM 3. Let n be a fixed sample size. Let {T."}, _, be a sequence of
estimators such that lim ,, , || Ex(T,)*) — T(F)lly = 0 for all F in a neighbor-
hood of a singular point F,,. Then, for every ¢ > 0,

. 2
lim sup Ex(IT,"Iv) =
m=% peF, H(F, Fy) <¢

5. Proofs.

Proor or THEOREM 1. Let F, € F be a singular point. Without loss of
generality, let F, ; € F be the extremal distribution which gives the b(¢) for
e>0.

Note. In cases where F, ; does not exist in F, we can choose any distribu-
tion G, € F such that H(G FO) < ¢ and

b(e) — IT(G,) — T(F,)| < &°.

By such choices, the following argument will still go through just by
replacing b(e) with b(¢) = |T(G,) — T(F,)| and replacing F, ; with G,. (Since
all cases in the proofs of the theorems in this section can be argued in a similar
way, without loss of generality, we will use Fa, 1 as the extremal distribution in
all the proofs in Section 5.) For our convenience in the following proof, let
f§M, £ be the densities for the n-fold product probability distributions F§™
and F(’i), respectively, w.r.t. a dominating measure—say, u = (F0 + F, 1)/2
[where G™ denotes the n-fold product probability measure for n iid. random
variables generated from the distribution G]. Notations of this kind will be
used throughout Section 5.

Suppose T, is l-unbiased and /-informative at a singular point F,,. Then, by
a direct application of the Cauchy—Schwarz inequality (similar to Pitman [17],

page 35),
b%(s) = IT(Fy) — T(F, )II¥
= Ep(T,) — Ep, (T)I¥

2
< ( fiz.ivirge - rvian)
G (il + ) ey - 1) aw)

< (1T ((R) 2 + L)) du) - (R0, B)
- O(H*(F{™, FLY)
=0(n-&?%).
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Therefore,

b(e) |\’
(5.2) - < 0(1).
This contradicts that F, is a singular point. O

Proor or THEOREM 2. For simplicity, the following illustrations will give a
clear picture of the proof of Theorem 2 (an alternative proof is also available in
[15]). Let F, € F be a singular point with infinitesimal irregularity. Let T, be
an estimator for estimating the functional T'(F), which is /-a-unbiased and
l-a-informative with modulus rate f(n) =bz(n"'/?) at F,. And let p, =
(Fy + F,,-12 1) /2. Due to the frequent usage of the following notations, the
proof will be neater by redefining these notations as follows:

()T, = T(Fo))=W,0, [ (n) (T~ T(Fpp-1r21)) = W, 1,0
FH(n)(T(Fo) = T(Fop-12,1)) = Zy q-
First of all, it is clear that, for any x,y € V,
Il (x + )llv < Mp(x)llv + llylly.
Therefore,
(5.3) 13 (We, 1, ) v < N p (W, )llv +11Z,, Iy

Second, by /-a-unbiasedness, and /-g-informativity (through an argument with
Chebyshev inequality), we know that

< Ep(IlLy (W, )% ) /(M — 1)

-0 asn — x,then M — .
Therefore,

I ”Zn,a”V - ||EF0{ZM(Wn,1,a)}||VI
=< ” EFO{Zn,a + lM(Wn,O)} - EFo{lM(Wn,l,a)}”v + ” EFO(ZM(Wn,O))”v

21\1/2
=< (EFO{"Zn,a + lM(Wn,O) - lM(Wn,l,a)”V>) ' PFO(”Wn,OIIV = M - 1)

+||EF0(ZM(Wn,O))||v
<0(1)-0o(1) +0(1) asn - »,then M -
=o0(l) asn — o,then M — .
Consequently,
| Erfta (£ (n)(T, = T(Fan- )}y
(5.4) =1Z, ,lv+o(l) asn — »,then M - »
=h(a) +0o(1) asn — o,then M - ,thena - 07.
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On the other hand,
| Exftar( £ (n)(T, = T(Fupre D))}y
<[ B, 1o (W, 1)}y
+ | Erftae(Wo 1.0)} = Er, i St (W 1) [y

(5.5) 5” EFa,,—l/z,l{lM(Wn,l,a)}”v + flllM(Wn,l,a)“V( fén) - (n)-W 1) dl“’n
= ” EFa,,—l/z,l{lM( Wn, l,a)} ”V
+ (Mg (W DI ((F5) + (£S2002,1) )

<((F)* = (£2n)"") dits.

Now, by (5.3), l-a-unbiasedness, [-a-informativity, an application of
Cauchy-Schwarz inequality on the second term of (5.5), and a well known fact
that H(F{™, F{:212 ) = O(a) as n — », we have that, for large M and large
n with a < a, such that h(a) [defined in (2.5)] is less than 1,

the second term of (5.5)

{flllM(W 1a)||V((f(§n))1/2 (£ 1) ) dun}l/z
X H(F§W, Fibys )

< (2B (M (W, 1 DIF) + 2B, (I (W, 1 )I%)}
x H(F§W, Fis ;)

< (2B Iy (W, )I}) + 451y (W, 0)lIvIIZ, v

1/2
+2EF(”Zn a”%’) + 2EFan—1/2’1(||lM(Wn,l,a)”%’)}
X H(F(n) F( L1/2 1)
< (4MF0 +4My? + 2) Ve, O(a) asn — o,then M - »,thena - 0"

Therefore,
(5.6) (5.5) =0(1) +O(a), asn — o, then M - »,thena — 0*.

Hence, by (5.4) and (5.6), h(a) < O(a) + o(1) as a — 0, which contradicts to
the infinitesimal irregularity. O

Proor or THEOREM 3. Let F, be a singular point. Let n be the fixed
sample size. Let {T"*}7 _, be a sequence of estimators as given in Theorem 3.
Then |Ex(T,™) — T(F)lly = 0 as m — o« for every F in a neighborhood of F,
(say, an ¢;-Hellinger ball around F,). Now, suppose that there is an
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£ > 0 such that

lim sup EF(IIT,{"II%) # 00,
m=® peF H(F, F)<eg

Then, there must be a positive number M, and a subsequence {T,*};_; such
that

(5.7) sup E;(ITI3) <M forall .
FeF, H(F, Fy)<g,

Let ¢, be a number such that 0 < &, < min(e,, £;). Then, (5.7) implies

(5.8) sup Eo(ITI3) <M forall k.
FeF, H(F, Fy)<¢

Now, for every sufficiently large positive integer ¢, we can select a number
My, from the index set {m,};_, inductively such that m,, <m,q, if t <¢
and

5y ™lIE(T) <R

< b(¢t"1/2) /6.

Thus, by the same argument as in Theorem 1, by (5.9), and by the fact that
H*(F{™, F%)2 1) = nt~ (1 + o(1)), we have

4 bA(t7V?) N g
(5'10) 5 nt_l(l + 0(1)) =< 2(EFO(”TLL k(t)”V) + EFt—l/z’l(”Tn k(t)”V))'
Since F, is a singular point, the Lh.s. of (5.10) will blow up to infinity when
t — o while the r.h.s. remains bounded. This is certainly a contradiction. O

EFt—l/Z’ 1( Tnmk(t)) - T( Ft_l/z, 1) “V}

v)
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